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Abstract

This paper focuses on the development of partial inverse compensation techniques for linear control de-
sign in systems employing magnetostrictive transducers operating in nonlinear and hysteretic regimes. At
low drive levels, linear models can be used to characterize strains and forces generated by magnetostrictive
transducers with reasonable accuracy. However, at the moderate to high drive levels where transducer per-
formance is optimal, inherent constitutive nonlinearities and hysteresis must be accommodated to achieve
the accuracy and speed requirements for high performance applications. Appropriate nonlinear and hys-
teretic modeling techniques are reviewed and an inverse compensator based on the nonlinear kernel of the
model is developed. The performance of the technique is illustrated through numerical examples.
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1. Introduction

Magnetostrictive transducers have been increasingly employed in certain industrial and automotive
processes due to the magnitude of forces and strains which can be generated through currents applied to a
surrounding solenoid. To achieve bidirectional forces and strains, the actuator inputs are typically biased
through either an applied DC current to the solenoid or by way of a permanent magnet surrounding the
solenoid. Even in this biased state, however, the transducers exhibit hysteresis and constitutive nonlinear-
ities which must be accommodated in both models and control designs to achieve the speed and accuracy
specifications for high performance applications.

A variety of modeling approaches have been employed to quantify magnetostrictive transducer dynamics
including Preisach models [1, 3, 10, 12, 13] and quasi-macroscopic models based on domain wall properties
of the constituent materials [4, 5, 6, 7, 21]. A property of both approaches is the fact that associated
inverse models can be constructed to build full inverse compensators for linear control design. However,
the nature of the full inverse models differs substantially for the two approaches. Due to the algebraic
nature of Preisach models, algebraic inverse models can be constructed for arbitrary initial conditions.
The models based on domain wall dynamics have the form of differential equations which evolve as a
function of the input field or time. This yields inverse models posed in terms of a complementary differential
equation. There exist advantages and disadvantages to both approaches for constructing models and inverse
compensators; however, in both cases the complexity in constructing a full inverse provides a significant
technological challenge when experimentally implementing the compensator. Furthermore, this complexity
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leads to significant robustness issues when designing compensators which must perform under a variety of
operating conditions.

An alternative approach is to employ partial compensators which incorporate the primary nonlinear
mechanisms but are sufficiently efficient and robust to permit real-time implementation in physical sys-
tems. In this paper we consider a partial inverse compensator based on the anhysteretic (hysteresis-free)
component of recently developed domain wall models for magnetostrictive transducers. This incorporates
the nonlinear behavior of the transducer, including saturation nonlinearities, but neglects the hysteresis
inherent to the system. It is illustrated through numerical examples that the unincorporated hystere-
sis, which introduces phase delays into the transducer dynamics, can be successfully attenuated through
feedback mechanisms when employed in combination with the partial inverse compensator. This yields a
control design which is sufficiently efficient and robust to experimentally implement, as illustrated in [14]
where an analogous design was employed.

The nonlinear anhysteretic model, fully coupled hysteresis model, inverse compensators, and commen-
surate numerical techniques are summarized in Section 2 for a prototypical magnetostrictive transducer
design. In modeling the transducer, care is taken to couple the nonlinear magnetomechanical effects with
the elastic properties of the transducer. A proportional-integral-derivative (PID) control design which
incorporates the partial compensator is discussed in Section 3 and illustrated through numerical examples
in Section 4. Specifically, it is illustrated that through linear control design in combination with the partial
compensator, highly accurate displacements are achieved even while operating the transducer in highly
nonlinear and hysteretic regimes.

2. Transducer Model and Inverse Compensators

We consider here the development of a model and inverse compensator for the prototypical magne-
tostrictive transducer depicted in Figure 1. This design is representative of transducers commonly em-
ployed in both academic and industrial applications. Input fields are provided by the application of a
current to the solenoid surrounding a Terfenol-D rod. Prestress mechanisms are employed to further align
domains perpendicular to the longitudinal rod axis and to maintain the rod in compression. The mass
at the end of the rod provides a lumped model of structural components driven by the actuator. The
permanent magnet surrounding the solenoid provides a bias field to achieve bidirectional strains and forces
and can also be employed for flux shaping to minimize end effects in the rod.

The model will be developed in four steps; (i) quantification of the anhysteretic magnetization M,
(ii) quantification of the total magnetization M, (iii) characterization of the free strains, or magnetostriction
A, and (iv) characterization of the full strains e and displacements at the rod tip. All components of the
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Figure 1. Cross section of a prototypical Terfenol-D magnetostrictive transducer.



model have been developed in previous investigations and only those details pertinent to the development
and testing of the inverse compensator will be included.

The anhysteretic magnetization M, can be interpreted as the locus of values obtained if a decaying AC
field (or stress) superimposed on a DC field (or stress) is employed to obtain minimum magnetization or
energy states. Physically, the anhysteretic magnetization can be interpreted as the magnetization obtained
when domain walls are translated across pinning sites to obtain a minimum energy state [8].

For the model described here, Boltzmann statistics are used to balance the thermal and magnetostatic
energies in order to quantify the anhysteretic magnetization. Under the assumption of uniform dipole
orientation, this yields the Langevin model

My = M, [coth(H, /a) — (a/ H)], (1)

whereas the Ising model
Mgy = Mg tanh(H./a) (2)

results from the assumption that dipoles can align only in the direction of the applied field or opposite to
it. Here M, denotes the saturation magnetization, a is temperature-dependent coeflicient, and

He:H+OéM+HU (3)

is the effective field observed in domains. In the latter expression, H is the field generated by the solenoid,
a is a coupling coefficient which quantifies field effects due to neighboring dipoles, and H, is the field
generated by stresses in the material. We note that while the expressions (1) and (2) are equivalent
through third-order terms, the Ising relation (2) is advantageous for inverse compensator design since it
can be inverted to yield

H = a - arctanh(M,y, /M) — oMy, — H, . (4)

Expression (4) provides the basis for constructing a partial inverse compensator for linear control design.

To quantify the total magnetization M generated in the Terfenol-D rod, it is necessary to also incorpo-
rate the reversible and irreversible magnetization M,¢, and M;,, respectively due to domain wall bending
and translation across pinning sites. As detailed in [8, 9] for general magnetic materials and [4, 5, 6, 7]
for magnetostrictive transducers, the use of magnetostatic principles to compute the energy required to
reorient dipoles in order to model domain wall motion yields the differential equation

dMirr _ 6-‘ Man - Mirr (5)
dH "k — a(Myy — Miy)

The constant k& quantifies irreversible effects, § = sign(H) guarantees that the energy required to break
pinning sites always opposes the field, and

g_{ 1 , (dH >0and M < Mg,)or (dH <0and M > M,,)

0 , otherwise

enforces reversible domain wall motion during initial field reversal. When combined with the algebraic
relation
Myey = C(Man - Mirr)a (6)

where c is a reversibility coefficient, this yields the expression
M = (1 - )My + cMy (7)

for the total magnetization. The relation (7) is typically employed for material characterization.



For compensator design, it is advantageous to reformulate (7) as

oM = F(H, M)
oH (8)
M(Hp) = M,
h
where P 1 s Mu=M | OMy, o)
b — A C

where & = 1% and M,, is specified by either (1) or (2). A model inverse is then specified by the
complementary differential equation

oM~ 1
OH — F(M~',H) (10)
M~Y(Hy) = M; .

This provides an exact inverse if the parameters My, a,a,c and k are known exactly or an approximate
inverse if the parameters are unknown or slowly varying due to operating conditions. We note that while
the inverse (10) has been experimentally implemented [19], highly accurate initial conditions for (10) must
be obtained in order to achieve accurate compensation for the hysteresis and constitutive nonlinearities.
This promotes the use of partial compensators based on (4).

The expressions (7) or (8) quantify the relation between the field generated in the Terfenol-D rod
and the resulting magnetization. It is next necessary to quantify the strains, forces, and displacements
generated by the change in magnetization. This is considered in two steps: (i) quantify the free strains in
the material and (ii) quantify the total strains which also include elastic effects.

For an unbiased actuator, the free strains, or magnetostriction, can be characterized by the quadratic
relation

3 o

Alt) = M 11
0= 5312 (1)
where \; denotes the saturation magnetostriction. To achieve bidirectional strains or forces, the transducer
is biased by the surrounding magnet or the application of a DC field to the solenoid. For a bias of M, /2,

the free strains are modeled by
3)\2 2
At) = o [M2(2) + 2M, M (2)] (12)
with similar relations resulting from more general bias levels.
The relation (12) quantifies the free strains due to the rotation of dipoles and hence changes in magne-
tization but it does not incorporate elastic properties of the Terfenol-D rod and prestress springs nor does
it incorporate the inertial effects due to the lumped masses at the end of the rod. The incorporation of

these effects requires the generalization of the linear relation

e=slo+dssH

where ¢ and o respectively denote the strain and stress, s? is the compliance at constant field, and ds3
is a linear coupling coefficient, to accommodate the previously modeled constitutive nonlinearities and
hysteresis. This is accomplished by replacing dssH by A specified in (12) and considering the dynamic
equations for the rod. The development of this component of the model is detailed in [5, 7].

For the quantification of total strains and resulting displacements, we consider the rod to be fixed at
the left end (x = 0) while the right end (z = L) is constrained by a damped oscillator and has an attached
point mass My, as depicted in Figure 2. The density, Young’s modulus and internal damping coefficients
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Figure 2. Orientation of spring forces, edge reactions and resultants for the Terfenol rod.

for the rod are respectively denoted by p, E and cp. The prestress spring is assumed to have stiffness ky
and Kelvin-Voigt damping coefficient cy..
Under the assumption of linear elasticity, Kelvin-Voigt damping, and small displacements, the stress
at any point z,0 < z < L, is given by
ou 0%u

o(t,z) = E%(t,x) +cp Dol (t,z)

— EX(t, 1) (13)

where u(t, z) denotes the longitudinal displacement and A(¢,2) = A(t) is given by (12). We assume that the

magnetostriction is uniform along the length of the rod. This assumption is reasonable in present actuator

designs since flux shaping via the surrounding magnet can be used to minimize end effects in the rod.
Force balancing then yields

BQU BNM
— - Ttot 14
ot? ox (14)
where the resultant is specified by
ou 0%u
Nyt = EA— A — EAMN.
on =BG, TenAgray — EAX

To obtain appropriate boundary conditions, we first note that u(¢,0) = 0. Force balancing at z = L yields

ou 0%u
Ntot(Lat) = _kLu(taL) - CL_(ta L) - ML ) (t L)
ot ot
The initial conditions are taken to be u(0,z) = %(0, z) =0.
To pose the PDE (14) in a form which facilitates approximation, we consider a weak form of the model
with state space X = L?(0,L) and the space of test functions is taken to be V. = H}(0,L) = {¢ €

H'(0,L)] ¢(0) = 0}. Multiplication by test functions followed by integration then yields the weak form

L 9% L Oudd L 0%u 0¢ 8(;5
/0 pAGEPde = _/o A as %~ / coAs ooz +/ EAN 5,4
(15)
By 8%
— (kpu(t, T) + e S5 1) + M52 1, T) | (L)

which must be satisfied for all ¢ € V.



For either simulation purposes or control implementation, it is necessary to discretize the infinite
dimensional model (15). This is accomplished by employing a Galerkin discretization in space and a finite
difference approximation in time. To define a finite element discretization in space, we consider a uniform
partition of the interval [0, L] and consider a basis {¢;}}¥.; comprised of of linear splines

) (x —mi—1), i1 <z <y
¢Z($):E ($i+1—$),$i§x§xi+1 , i=1,---,N—1

0 , otherwise

(x—zN-1), zv1 <z <zN

¢mm=%{

0 , otherwise

(see [11] for details).
The solution u(t,z) to (15) is then approximated by the expansion

uN(t, x) = z_: uj(t)d;(z) -

Because HY = span{¢; i]\il C H1(0, L), the approximate solution satisfies the essential boundary condition
u™ (t,0) = 0 and can attain arbitrary displacements at z = L.

The projection of the problem (15) onto the finite dimensional subspace H” yields the second-order
semidiscrete system

Qi(t) + Cu(t) + Ki(t) = f(¢t) (16)

where 4(t) = [u1(t),- - - ,un(t)]. The mass, stiffness and damping matrices have the components
( L
[ pAbidids | itnori#n
0

Q=9 ",
/ pApipjdr+ My, , i=mnandj=n
\ Jo

¢ (L

/EA¢;¢;-dz , i#£norj#n
0

[Klij =

L
/EA¢§¢;~d:v+kL , t=mnandj=mn
\Jo

¢ /L
/0 cDAqﬁqu;-dx , 1£norj#mn
[Clij =

L
/ cDA¢2¢9-dw+cL , t=mnandj=mn
\Jo
while the force vector is defined by
. L
Fe = [ BANE, 26! (@) do

Letting 7(t) = [@(t), ©(t)]T and



the second-order system (16) can be posed as the first-order system
(17)

where the 2N x 1 vector ¢y denotes the projection of the initial conditions into the approximation space.
The system (17) can be employed for finite-dimensional control design. For subsequent implementation,
we consider a temporal discretization of (17) using a modified trapezoid rule. For temporal stepsizes At,
this yields the difference equations
Gi1 = Af; + FE(L)
gO = ?7(0) ’
where t; = jAt, ¥; appoximates (t;) and

(18)

Az S A o A

This yields an A-stable, single step method requiring moderate storage and providing moderate accuracy.

3. Control Design

We summarize here the design of control laws which utilize the partial inverse compensator. The
emphasis is to illustrate the flexibility of the compensator for general purpose control methods rather than
optimal control design; hence we consider a proportional-integral-derivative (PID) controller which utilizes
the partial inverse compensator. The performance of the partial compensator when incorporated in more
sophisticated control laws will be reported in future works.

The general form of the PID controller employed here is

u(t) = k [e(t) T/ )ds+ Ty (1) (19)

where k, T; and T, are gains and e(t) is the error between the desired signal and the system output. For the
application described in the next section, the error is defined to be the difference between the desired and
measured positions of a cutting head fastened to the end of the Terfenol-D rod in the transducer depicted
in Figure 1. Hence the errors are given by

e(t) = uq(t) — u(t, L)

where uy is the desired position of the rod tip and u(t, L) denotes the solution to the modeling differen-
tial equation (15). The latter incorporates the constitutive nonlinearities and hysteresis inherent to the
transducer through the input term A(¢) defined in (12).

As illustrated in Figure 3, the partial compensator

M~ = a-arctanh(H/M;) — oH — H,,

which is derived from (4), is employed as a filter before the nonlinear and hysteretic transducer model (or
physical actuator). This filter accommodates the constitutive nonlinearities, including saturation effects,
but does not compensate for hysteresis.

The standard method for determining the gains k,T; and Ty, as described in [2], is to introduce a step
input to the system and find the point of maximal slope for the system response. The intercepts of the
tangent line at this point with the coordinate axes provide the parameters used to determine gains.



/ / u
—u(;O—» , f Plant

Partial Hysteretic
Compensator Actuator

Figure 3. Control design utilizing a partial inverse compensator in a system with nonlinear and hysteretic
actuators.

Numerical examples have illustrated, however, that further tuning of parameters from the initially
prescribed values will significantly improve the performance of the method. This is partially due to the
phase delays associated with uncompensated hysteresis and the large difference in magnitude between the
output and input signals. The errors due to phase delays affect the integral component of the control in a
manner similar to that described in [2].

4. Numerical Examples

To illustrate the control methodology, we consider a prototypical application similar to that developed
at Etrema Products 3. As depicted in Figure 4, a magnetostrictive transducer is employed to mill out-of-
round objects. To attain production specifications, milling is performed at a rate of 3000 rpm with cutting
tolerances of 1 micron. Details regarding the experimental implementation of a control law employing
an analogous compensator can be found in [14].

For the numerical simulations reported here, periodic signals modeling potential cutting trajectories
were specified for u4(t). The parameter values p = 9250 kg/m?, E = 3 x 10!° N/m?, c¢p = 3 x 10° Ns/m?,
My, = 0.5 kg, kr, =2 x 105 N/m and ¢;, = 1 x 103> Ns/m were employed in the model (15) quantifying the
displacements generated by the transducer. These values were obtained when characterizing the transducer
reported in [7] and hence are typical for transducers of the type employed in milling applications. The
parameters in the hysteresis model were taken to be My = 7.65 x 10° A/m, o = —.01, ¢ = 0.18, k =
4000 A/m and a = 7012 A/m. As noted in [5, 7], these choices are also commensurate with values
obtained when characterizing physical transducers.

3Etrema Products, Inc., 2500 North Loop Drive, Ames, IA 50010

: Magnetostrictive
Milled
Object ‘ Transducer
>
Cutting )
Head Terfenol-D

Figure 4. High speed milling application.
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Figure 5. (a) Hysteretic relationship between the input field H and magnetization M modeled by (7);
(b) Relationship between H and the strain ¢ = u(t, L)/L given by (15).

We consider first the tracking of a single frequency, sinusoidal trajectory ug(t). The modeled magneti-
zation and strain resulting respectively from (7) and (15) are plotted in Figure 5. Both relations illustrate
the significant hysteresis and constitutive nonlinearities inherent to the system. The commanded position
uq(t) and measured position u(t, L), in the absence of feedback control or inverse compensation, are plot-
ted versus each other in Figure 6a and as a function of time in Figure 6b. The first plot illustrates the
hysteretic relationship between the two trajectories while the second plot illustrates the resulting phase
delays and nonlinear saturation effects. The accuracy in this case is significantly worse than that specified
for the product.

The analogous trajectories obtained with the PID control law (19) employing the partial compensator
depicted in Figure 3 are plotted in Figure 7. In this case, a nearly linear relation is maintained between

the commanded and measured trajectories, and the maximum absolute error over the time interval [0, 25]
is 3.37 x 1078.
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(a) (b)
Figure 6. (a) Relationship between the measured and commanded positions in the absence of partial
compensation or feedback; (b) Measured and commanded positions as a function of time.
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Figure 7. (a) Relationship between the measured and commanded positions with partial compensation
and feedback; (b) Measured and commanded positions as a function of time.

The performance of the control design for tracking trajectories comprised of multiple frequencies is
illustrated in Figure 8. Figure 8a illustrates that a nearly linear relation between the commanded and
measured positions is again maintained in spite of the hysteresis and constitutive nonlinearities inherent to
the actuator and incorporated in the actuator model. The maximum absolute error between the trajectories
plotted in Figure 8b is 1.04 x 107 for this simulation. In both cases, the PID controller employing the
partial compensator is effectively attenuating the constitutive nonlinearities and hysteresis associated with
the transducer.
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Figure 8. (a) Relationship between the measured and commanded positions with partial compensation
and feedback for two frequencies; (b) Measured and commanded positions as a function of time.



5. Concluding Remarks

This paper illustrates the construction of a partial inverse compensator for linear control design in
systems utilizing magnetostrictive transducers operating in nonlinear and hysteretic regimes. This com-
pensator is based on the anhysteretic magnetization which provides the nucleus for a variety of hysteresis
models based on domain wall properties of the constituent materials. Hence the partial compensator
arises naturally as one component of the model employed for full material characterization. While less
accurate than full inverse compensators based on complete hysteresis models, the simplicity of the partial
compensator facilitates experimental implementation and promotes robustness.

The performance of the partial compensator when employed in concert with a PID control law was
illustrated through numerical simulation to be highly accurate for the considered examples. Similar results
have been obtained experimentally with an analogous construction for a partial inverse [14]. In combination,
these results attest to the capabilities of the method for linear control design in high performance systems
utilizing magnetostrictive actuators operating in nonlinear and hysteretic regimes.

Finally, analogous models have been developed for ferroelectric devices including piezoceramics [17, 18]
and relaxor ferroelectric materials [15, 16], and analogous control methodologies for these materials are
currently being developed.
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